桓楠百科网

编程知识、经典语录与百科知识分享平台

n阶即高阶导数计算举例解析

本文主要内容:高阶导数的计算举例。一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义,二阶和二阶以上的导数统称为高阶导数,本文主要介绍三阶以上导数计算规律。

例题解析

n 阶导数:莱布尼兹公式

设函数u(x)、v(x)在点x都具有 n 阶导数,则由一阶导数乘积的运算法则有:

[u(x)*v(x)]'=u'(x)v(x)+u(x)v'(x);

二阶导数乘积的运算法则有:[u(x)*v(x)]''=u''(x)v(x)+2u'(x)v'(x)+u(x)v''(x);

可见导数阶数越高,相应乘积的导数越复杂,但其间却有着明显的规律性,为归纳其一般规律,乘积的 n 阶导数的系数及导数阶数的变化规律类似于二项展开式的系数及指数规律。于是由归纳法可求得:

常用的高阶导数公式


控制面板
您好,欢迎到访网站!
  查看权限
网站分类
最新留言